This presentation is courtesy of

Advances in Flexible Packaging Adhesives

CPP Expo Presentation September, 2005 Nancy Smith

Agenda

- Basic types/ functions of adhesives used in flexible packaging
- Laminating adhesives: types, chemistries, and advances
- Heat seal coatings: applications, types and advances
- Cold seal adhesives: applications, trouble shooting and advances
- Conclusions

Types of Adhesives Used in Flexible Packaging

- Laminating join two flexible web substrates together
- Heat seal join a flexible web to another web, other substrate or structure cup using heat and pressure
- Cold seal seals adhesive surface to adhesive surface using pressure only

Types of Packaging Solutions

Serfene ™ Barrier Coatings

Tymor ™ Extrudable Resins

Adcote TM
Mor-free TM
Robond TM
Laminating Adhesives

Adcote [™] Robond [™] Mor-Melt [™]

Heat Seals

Adcote TM
Mor-free TM
Robond TM
Coatings

Coseal ™ Robond ™ Cold Seals

Laminating Adhesives

- Can be classified by application type:
 - Solvent borne
 - Solventless (100% solids)
 - Waterborne
 - Radiation Curable (100% solids)
 - Combination radiation curable
- Can be classified by performance level or chemistry

Adhesive Chemistry

Polyether Urethane – water, solvent, and solventless

Polyester - solvent based

Polyester Urethane – water, solvent, and solventless

Acrylic - usually water based but could be solvent

Urethane Chemistry

Definition

 The reaction between an "isocyanate" group and "hydroxyl" group creates a "urethane".

Hydroxyl (-OH) -containing molecule

Urethane

Isocyanate Reaction: Polyurethane

Isocyanate

Urethane unit

Reaction with -OH

General Purpose

- Can be single or two component solvent based, solventless or water based
- Typical uses:
 - Salty snacks
 - Confectionery
 - Bottle labels
 - Bakery

General Purpose Example

- Performance of adhesives goes from fairly low performance to very demanding
- Here we have a bottle label – low bond strength, some water resistance, and high line speeds
- Can be waterborne or 100% solids

Medium Performance

- Can be two component solvent based, solventless or water based
- Typical applications:
 - Spice pouches
 - Flavors
 - Chemical
 - Soap
 - Industrial
 - Medical/ pharmacuetical
 - Hot fill (juices, etc.)

Medium Performance

- Must have product resistance
- Must have high heat resistance for zipper installation

High Performance

- Specialty applications where high heat and or chemical resistance is needed (solvent based or solventless)
- Typical applications:
 - Retortable pouches
 - Retortable lidding
 - Concentrated chemical storage
 - Outdoor exposure / agricultural bags

Highest Performance

- •Adhesive must survive retort process (up to 120°C 30 minutes).
- •Adhesive must have product resistance.
- •Usually solvent borne; some uses of solventless in high performance

Advances In Laminating Adhesives

- New high performance adhesives that give improved application characteristics (higher solids at lower viscosities)
- New waterborne adhesives that have bond values more equivalent to solvent based adhesives

What Is A Heat Seal?

- Thermoplastic material applied as a liquid coating, dried, tack, and block free.
- Heat activated by to become soft and tacky.
- Pressed to second substrate to make bond.
- Cooled to room temperature to form bond between layers of substrates.

Choice for a Heat Seal Need to define the following

Components of Heat Seals

- Defining resin or resins.
- Tackifier resins or additives.
- Lubricants, waxes, and slip modifiers.
- Antioxidants and stabilizers.
- Anti-blocking and heat stabilizing fillers.
- Solvents and diluents.
- Water, dispersants, pH control, and surfactants.

Classes Of Chemistry

Solid Resin

- Ethylene Vinyl acetate (EVA).
- Modified EVA.
- Modified Polyolefin Copolymers.
- Modified Polyolefin Terpolymers.
- Polyester (PET).
- Modified PET.

Classes Of Chemistry

Water Based

- EVA and Modified EVA
- Ethylene acrylic acid (EAA)
- Ethylene methacrylate (EMA)
- Ethylene methyl methacryalte (EMMA)
- Polyvinyl alcohol (PVOH)
- Ionomer
- Acrylic
- PVdC

Classes Of Chemistry

Solvent Based

EVA lonomer

Vinyl EMA

PET EMMA

PVOH Polypropylene (PP)

Acrylic Polyamide

Markets Served

- Food Pouches
- Medical
- Pharmaceutical
- Peelable Lidding
- Portion Packaging
- Industrial

- Instant Photograph
- Agricultural Containers
- Paper and Graphics
- Frozen Food Cartons
- In Mold Label

Market Trends

- Specific performance targets for specific applications.
- Higher peel and burst strength with strong seal through properties.
- Primerless HSC for foils.
- Freezer to oven easy peel lidding.
- Hot fill, aseptic, retort applications.

Heat Seals: New Developments

- Waterborne high porosity heat seal coating

 platform technology for varying porosities
 and seal activation temperatures.
- Higher solids EVA waterborne heat seal coatings
- Heat seal coatings for shrink label applications

Cold Seals Defined

- Adhesives (cohesives) that bond when exposed to pressure only
- Formulated so that tack to non cold seal surfaces is minimized
- Release lacquers or films are still required due to pressure in roll stock

Product Applications for Cold Seal Adhesives

- Heat sensitive products such as chocolate and ice cream
- Very high speed packaging machines
- Combination of both: high speed packing for heat sensitive products
- Medical packaging materials
- Industrial applications

How Cold Seals Work

- When cold seal is applied and dried, adhesive portion orients toward the film, while the cohesive orients toward the surface
- Pressure is applied and the long rubber polymer chains intertwine giving cohesive bonding

Synthetic Cold Seals

- Composed of cohesive and adhesive components
- Cohesive components are synthetic elastomers
- Synthetic elastomers eliminate variation due to natural product
- Synthetics also eliminate allergy issues

Cold Seals: New Developments

- Acrylic / natural rubber based cold seals formulated to decrease end seal deadening
- 100% synthetic cold seal using proprietary technology

Surface Analysis Of Coated Samples Acrylic Cold Seal

- XPS quantifies elemental composition of the surface from all sources
- Used to compare surface contamination

XPS Analysis

New Synthetic Cold Seal

- Based on proprietary technology
- Developed for laminates:
 - white OPP/ release OPP
 - MOPP/release OPP
 - MPET/release OPP
- Eliminates dependence on natural rubber latex supply

Summary

- Laminating adhesives, heat seal coatings and cold seal adhesives cover a wide variety of applications for flexible packaging
- When deciding on flexible packaging adhesives to be used, information sharing with the adhesive supplier is crucial to success

Thank You

Questions?

